

VIRTUAL DISTRIBUTED ENERGY SUMMIT 2021 -MODERNIZING NEW MEXICO ENERGY

Distributed Energy Technologies Program

Frank Currie

July 30, 2021

SMTC is a comprehensive center for training the next generation of smart- and microgrid professionals.

- Curriculum and courses
 - 4 Courses
 - 3 Certificates
 - 3 Degrees
- Educational equipment and software
- Educational microgrid

New Courses

- DESG 1120 –Introduction to Power Systems -- energy conversion/generation, transmission, and use
- **DESG 1110 Introduction to Smart Grids** Distributed energy and smart grid design consideration
- **DESG 2998 Distributed Energy Capstone** team project based ideas??
- **DESG 2999 Distributed Energy Internship** individual experience in a microgrid topic chosen by the student and instructor employers, research/design project if you're an employer interested in internships, contact us!

These have all been approved by the SFCC Curriculum Committee and are in our catalog

Curriculum Side

Certificates

- **Distributed Energy Technician** focus on basic skills to function as a technician: math, energy conversion, computer skills (programming/cyber security/networking)
- **Grid Modernization** for working professionals to learn about the fundamental issues of grid modernization
- **IT Support** IT/certification focus, but with an emphasis on smart- and microgrid issues

Certificate In Distributed Energy Technician (Nests into Engineering Technologies AAS)

PROGRAM REQUIREMENTS: (38-41 CREDITS)

BLDG 111 – Workplace Health and Safety **Credits: 3** DIST 1110 – Introduction to Smart Grids **Credits: 4** DIST 1120 – Introduction to Power Systems **Credits: 4** ELCT 227 – National Electrical Codes **Credits: 2** ELEC 111 - Electronic Fundamentals **Credits: 4** ELEC 122 – Digital Circuits **Credits: 4** ENVR 113 – Instrumentation and Controls **Credits: 3** ISCS 114 – PC Hardware and Software **Credits: 4** ISCS 122 – Computer Networks **Credits: 3**

MATH 1220 – College Algebra **Credits: 4** [OR] MATH 1350 – Introduction to Statistics **Credits: 3** SOLR 121 - Design and Installation of PV Systems I **Credits: 3**

RELATED REQUIRMENTS (1-3 CREDITS)

DIST 268 – Distributed Energy Capstone **Credits: 3** [OR] DIST 298 – Distributed Energy Internship **Credits: 1-3** [OR] ISCS 298 – Information Systems and Computer Science Internship **Credits: 1-3**

Certificate In Grid Modernization

(Nests into Engineering Technologies AAS)

PROGRAM REQUIREMENTS: (13 CREDITS)

DESG 2298 – Distributed Energy Internship **Credits: 2** [OR]

- DESG 2299 Distributed Energy Capstone Credits: 2
- DESG 1110 Introduction to Smart Grids Credits: 4
- DESG 1120 Introduction to Power Systems Credits: 4
- SOLR 121 Design and Installation of Photovoltaic Systems I Credits: 3

RELATED REQUIREMENTS: (3 CREDITS MIN)

ISCS 171 – Computer and Security Fundamentals **Credits: 3** [OR] ISCS 175 – Disaster Recovery **Credits: 3** [OR]

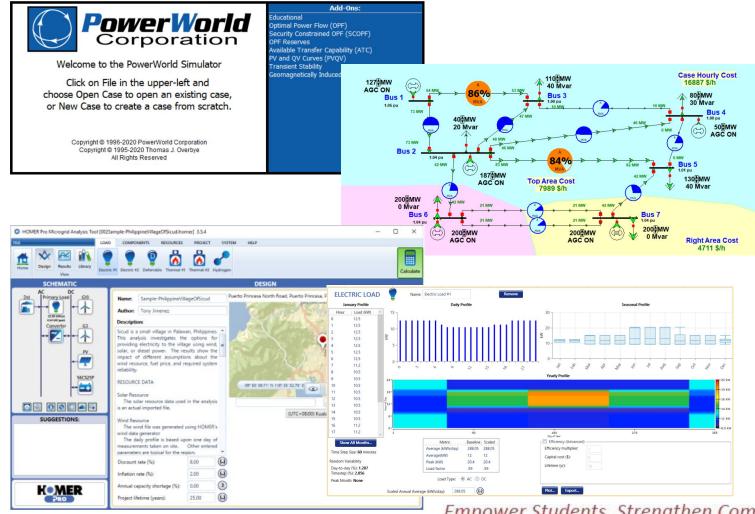
ISCS 273 – Computer and Network Defenses and Countermeasures Credits: 3

Certificate In IT Support for Smart- and Microgrids

(Nests into Computer and Information Technologies AAS)

PROGRAM REQUIREMENTS: (29 CREDITS)

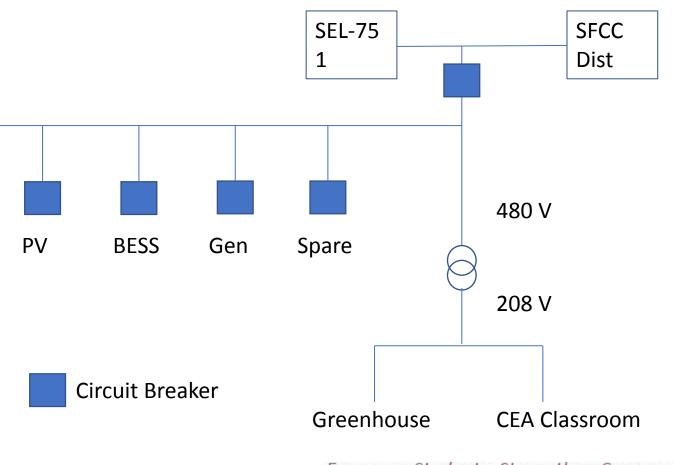
- ELEC 111 Electronic Fundamentals Credits: 4
- ENVR 113 Instrumentation and Controls Credits: 3 [OR]
- DESG 1110 Introduction to Smart Grids **Credits: 4**
- DESG 1120 Introduction to Power Systems Credits: 4
- SUST 1130 Sustainable Energy Technologies Credits: 3
- ISCS 114 PC Hardware and Software Credits: 4
- ISCS 122 Computer Networks Credits: 3
- ISCS 171 Computer and Security Fundamentals Credits: 3
- ISCS 273 Computer and Network Defenses and Countermeasures Credits: 3
- ISCS 298 Information Systems and Computer Science Internship Credits: 1-3


■ Wew Mexico SMART Grid Center

Smart- and Microgrid Training Center

Simulation Capabilities:

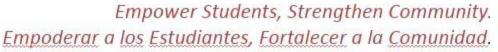
- Dedicated Computers
- PowerWorld Simulator Grid Simulation Software
- HOMER Pro Microgrid Design Software
- Siemens Campus Microgrid Simulators


nnovation

Smart- and Microgrid Training Center

Educational Microgrid

- 12 kW Tracking PV Array
- 100 kW/85 kWh Lithium-ion Energy Storage System
- 30 kW Natural Gas Backup Generator
- 11,000 sf greenhouse and classroom/lab building – about 20 kW peak, 10 kW min, 15 kW average


Microgrid Loads

- 11,000 sf greenhouse
- CEA classroom/lab
- 3-phase, 480 V

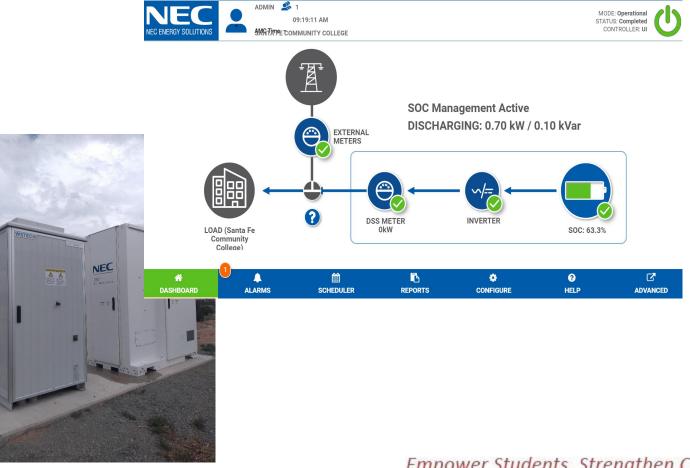
nnovation center

• ~20 kW currently

							Table .	and the second second	Franklin Strandite		
	A		С		E	F	G	н	I	J K	1
	Location/System	TAG	QTY	Description	Manuf	Part #	Voltage (V)	Current (A)	Power (W) Po	ower Total (kW) Usage 9/23	Link
	Overhead Fans										
	Greenhouse	M1	3	36 Medium Basket Fans - front, overhead	J&D Manufacturing	VDB20G	11	5 -	102	3.672 ~80-90% fans on 3-5pm	
	OVERHEAD FANS TOTAL									3.672 kW	
	Exhaust Fans + Wet Wall										
	Greenhouse	M2			American Coolair Century	CBL/MBF48 SPUNK56	115/208-230	9.3/5.0-4.8	1069.5	8.556 5 out of 8 fans on 3-5pm	
	Wet wall	M3		1 Large Pump back corner	?	?	?	?	2000	2 100% on 3-5pm	
8	EXHAUST FANS + WETWALL	PUMP 1	TOTAL							10.556 kW	
9	Growing Pumps										
10	Various	M4	1	14 Air Compressor / Pump	Active AQUA	AAPA110L	12	0 -	112	1.568 100% on 3-5pm	http:
11	Various	M5		5 Submersible Pump	EcoPlus	ECO1110assumed mult	12	0 -	92	0.46 100% on 3-5pm	https
12	NFT/Hydroponic	M6		1 AC DrivePump/Motor	Fuji ElectricFlint & Walling	FRN002C1S-7UCJ103	200-240208-	2:87.4 (S.F. Am	1760	1.76 100% on 3-5pm	https
13	222	M7		2 Motor / Pump - on Floor, front of house, 1/15HP	Iron Might / US Motors	K55MYHBM-8529	11:	5 1.3	149.5	0.299 100% on 3-5pm	
14	Dutch Bucket (Tomato) Blue Buck	et M8		1 Water Pump - 1/2HP	Flotec	FP5112-08	11:		805	0.805 100% on 3-5pm	
15	Algae Systems	M9		3 DC Motor	Leeson	CM34D25NZ10C	9		207	0.621 100% on 3-5pm	
16	Dutch Bucket (Tomato) Blue Buck	et C1		1 Pump Start Relay	Hunter	PSR-22				0 100% on 3-5pm	
17	Dutch Bucket (Tomato) Blue Buck	et C2		1 Controller	Hunter	PRO-C				0 100% on 3-5pm	
	Dutch Bucket (Tomato) Blue Buck			1 pH/EC Control	Black Stone	BL981411 / BL983317				0 100% on 3-5pm	
19	Algae Systems	C4		1 DC Motor Control	Leeson Speedmaster DC N	lotor Control				0 100% on 3-5pm	
20	Igrow 1400	C5		1						0 100% on 3-5pm	
21	GROWING PUMPS TOTAL									5.513 kW	
22	Heating										
	Heater	M10		4 Heater 1			11	5 4.2	483	1.932	
24	Heater	M11		4 Heater 2			11:		172.5	0.69	
25	HEATING - TOTAL									2.622 kW	
	LIGHTING - Exterior										
	Greenhouse Exterior	L1	1	14 LED Lights	?	?	120?		50	0.7 On at 5pm when I left	
	LIGHTING - Exterior Total									0.7 kW	
	LIGHTING - Interior										
	Greenhouse	L2	6	64 LED	2	2	120?	2	50	3.2 All off 3-5pm. Do these tur	n on at
	Greenhouse	L3			Lithonia Lighting				20	0.4 All off 3-5pm	

12 kW Tracking PV Array

- 3 x 4 kW tracking arrays
- 3 x 4 kW inverters one per phase



Energy Storage System (ESS)

- 100 kW/85 kWh
- Aeros Controller
- Demand Reduction
- Resilience for Greenhouse
- Research

In Progress

- 30 kW natural gas generator
- Load bank resistive and inductive loads
- Water Catchment system pumps and controls will become part of the microgrid

<u>Future</u>

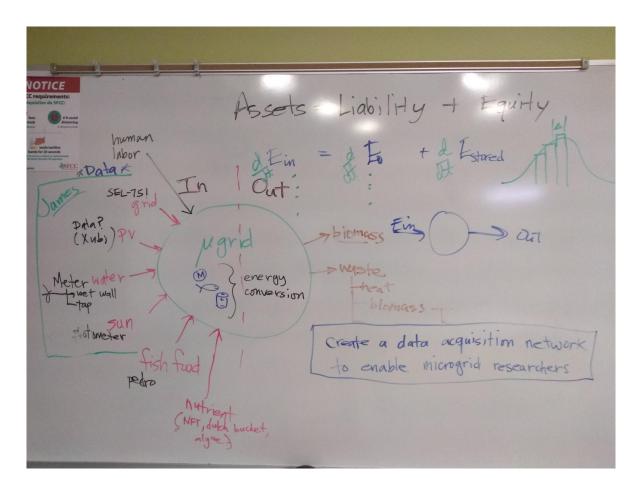
- Cold storage,
- the "Dome"
- PV expansion
- Concentrating PV integration

Campus Microgrid

The educational microgrid is being integrated into the broader campus microgrid project that is part of an energy performance contract with Siemens and moves the campus towards state and federal energy targets.

SFCC CAMPUS MICROGRID

Siemens Microgrid Controls 1.5 MW Solar PV 1 MW Nat Gas Generator 1 MW Li Ion BESS



Summer Equipment Installations & Our First Intern!

Set up a data acquisition network to enable education, training, and research

