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Industrial Experience

Mitsubishi Electric Research Laboratories

e Autonomous driving
* Heating, Ventilation, and Air-Conditioning

* Advanced Manufacturing, Spacecraft (JAXA)

Sequoia Technologies

e Local start-up

* Robotics for television broadcast

Air Force Research Laboratories

General Dynamics




Research Interests

Optimization and Control for
Energy Efficiency

Precision motion control
Factory automation

Motion planning

e Autonomous driving

* Drones and robotics

* Spacecraft rendezvous

Real-time optimization
Computational geometry
Symmetry

Learning-based control

Optimization

Control
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Symmetry: Intuition and Applications

Motivation: Model predictive control for large-scale systems
* High-dimensional problems

* Limited computation

Large-scale systems comprised of repeated components connected in regular
patterns

 Patterns called symmetries

 Also called invariance or equivariance

Benefit:

e Symmetric systems are simpler

-~
& "%-.»
.

* More symmetries = simpler system

—

L TN v

Question: How do we use symmetry to simplify MPC?
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Model Predictive Control

Receding Horizon Control

1. Determine current situation
A

* Look at the chess board PAST W
* Measuring sensors I

A 4

2. Formulate a plan of future actions til N
e Think about strategy
* Solve optimal control problem . o—o—o\,/#/./k\\'/.,_._,_. _
*t t+1 t+N

3. Apply first-step of plan
* Move your pieces

e Command the actuators
Finite-Time Optimal Control Problem

N
Model Predictive Control: min  p(ey) + Y qlk, uk)

UQy-- s UN—1

e Obtain control input by solving constrained finite-time =1
optimal control (CFTOC) problem s.t. Tgpt1 = f(@k, ug)

T € X,up €U
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Model Predictive Control

Receding Horizon Control

1. Determine current situation
* Look at the chess board
* Measuring sensors

2. Formulate a plan of future actions
* Think about strategy
* Solve optimal control problem
3.  Apply first-step of plan
* Move your pieces
 Command the actuators

Model Predictive Control:

* Obtain control input by solving constrained finite-time
optimal control (CFTOC) problem
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Model Predictive Control

Design Considerations for Model Predictive Control:

 Stability: Closed-loop stability not guaranteed

* Persistent Feasibility: Optimization problem ’—;_fiiiw

* may become infeasible

A 4

ti+l
* Robustness: Controller must continue to function in

presence of model uncertainty m
) F-----------\---5=-0—0—@

e Performance: Optimization problem only considers cost L "V TR ALt v
over finite-horizon

A 4

e Real-time Implementation: Need to solve optimization

problem in real-time
Finite-Time Optimal Control Problem

min  p(zy) +ZQ(CEk7Ukz)

UQg,---,UN—1
k=1

s.t. xpy1 = f(xg, uk)
T € X,up €U
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Model Predictive Control

Model Predictive Control:

e Obtain control input by solving constrained finite-time

optimal control (CFTOC) problem Finite-Time Optimal Control Problem

N
Explicit Model Predictive Control: i plen) + ]; a(@r, )
* Replace CFTOC with pre-solved look-up table st 1 = flag, ug)
* If CFTOC is QP or LP then look-up table is piecewise affine 3 rr € X,up €U )

on polyhedral partition

Explicit Model Predictive Control

(Fla:—kGl for x € R4

\Fraz + G, forxz e R,.

\. J
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Symmetric Constrained Optimal Control
A symmetry of the optimal control problem is a
transformation that preserves:

* Constraints
X =X
QU =U

* Dynamics
Of(x,u) = f(Oz, Qu)

* Cost

p(Ox) = p(x)
q(Oz,Qu) = q(x,u)
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Symmetric Constrained Optimal Control
A symmetry of the optimal control problem is a
transformation that preserves:

* Constraints
X =X
QU =U

* Dynamics
Of(x,u) = f(Oz, Qu)

* Cost

p(Ox) = p(x)
q(Oz,Qu) = q(x,u)
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Theorem: Symmetric MPC

If the optimal control problem is symmetric and convex

it has a symmetric controller

— uf(©x)

Qu ()

Corollary: Symmetric Explicit MPC

If the symmetric MPC is an LP or QP then the
symmetries permute the controller pieces

F, = F;0
G .

Q
QG;
OR;

=R,

15

Symmetry
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Symmetric Constrained Optimal Control

Theorem: Symmetric MPC

If the optimal control problem is symmetric and convex
it has a symmetric controller

Qug(z) = uy(Ox)

Corollary: Symmetric Explicit MPC

If the symmetric MPC is an LP or QP then the
symmetries permute the controller pieces

OF; = F,;0
0G; =G,
OR; = R;

© 2020 Dr. Claus Danielson Symmetry
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Example: Quadrotor

Symmetry group: Dihedral-4 group X reflection group

* 16 symmetries

Without symmetry:

e 10,173 controller pieces

* 53.7 megabytes

1

With symmetry:

e 772 controller pieces

1

e 4.2 megabytes 2 6
4 30
8 215
16 520
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Fundamental Domain Controller

Fundamental Domain Controller

* Orbit controller requires solving original constrained I - ____________ ............ S —
optimal control problem and compressing the result. s

e Fundamental domain controller solves a smaller
constrained optimal control problem.

Linear-complexity algorithms

* Constructing fundamental domain

* Searching for transformation into fundamental domain

© 2020 Dr. Claus Danielson Symmetry . 18



Fundamental Domains: Archimedean Solids
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Alternating Direction Method of Multipliers Algorithm

Problem:
* Generic linear MPC problem
e Outputs are quantities to be constrained N—1

S _ - : z:]' [Q S [
 Output constraints include input constraints Tih Z u| |S R |us
k=0

* Box constraints on outputs s.t. xp1 = Axy + Buy
Yk € YV

 Terminal cost and constraints can be added

© 2020 Dr. Claus Danielson Symmetry 21



Alternating Direction Method of Multipliers Algorithm

ADMM: Augmented Lagrangian QP

* Split variable with inequality constraints

© 2020 Dr. Claus Danielson Symmetry 22



Alternating Direction Method of Multipliers Algorithm

* Split variable with inequality constraints

* Add equality constraint to cost function
e Lagrange multiplier
e Quadratic regularization

© 2020 Dr. Claus Danielson
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Alternating Direction Method of Multipliers Algorithm

lteratively solve Augmented Lagrangian QP {rk}]k\f_—ol = {y, + %}5@\[—_01
1. Solve for states, inputs, and unconstrained outputs ¢
Tk, Uk, U
oo Tk T _ /SPI: Unconstrained Optimal Control )
2. Solve for constrained outputs Yk [ 0 s
. Tk Tk P 2
3. Solve for dual-variables Yk min Z [Uk] [S R] [Uk] +§H'Uk_7“kHz
k=0
s.t. xx11 = Axg + Bug
Intuition: \ v = Cxp + Duy
* Sub-problem 1 trades-off tracking the unconstrained {U }N_l
optimal and reference that avoids constraints kJ k=0
{Tk;}é\[:_ol = {yi + yk}JkV:_Ol SP2: Ccilstraint Projection ;
= arg min — (v —
Yr gykeyHyk (ve — ) |I5
* Sub-problems 2+3 provide integral-action on the reference N_1
to avoid constrain violations {yk}k:O i
SP3: Dual-Variable Update
T =Yk + Uk — Yk
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Alternating Direction Method of Multipliers Algorithm

lteratively solve Augmented Lagrangian QP {m}g:_ol = {yr + %}g:_ol

1. Solve for states, inputs, and unconstrained outputs
Ly U, Vk

2. Solve for constrained outputs Y B

3. Solve for dual-variables Yk

. === Yy nconstr
A l'l _.0__,1’2/=y£/+7£]
Intuition: 7
L .
* Sub-problem 1 trades-off tracking the unconstrained {U }N_1
optimal and reference that avoids constraints kJ k=0

{Tk}é\f:_o L _ {yk i Vk}]kvz_o 1 SP2: Constraint Projection

. 2
yp = arg min {|yx — (vr = )|,

* Sub-problems 2+3 provide integral-action on the reference N_1
to avoid constrain violations {yk}kzo

SP3: Dual-Variable Update
T = Ve + Uk — Uk
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Alternating Direction Method of Multipliers Algorithm

Iteratively solve Augmented Lagrangian QP {m}év:_ol = {yr + %}g:_ol

1. Solve for states, inputs, and unconstrained outputs
Ly U, Vk

2. Solve for constrained outputs Y

3. Solve for dual-variables Yk

Intuition:

e Sub-problem 1 trades-off tracking the unconstrained
optimal and reference that avoids constraints

{Tk}é\f:_o L _ {yk: i Vk}]kvz_o 1 SP2: Constraint Projection

. 2
yp = arg min [ly, — (or — )

* Sub-problems 2+3 provide integral-action on the reference N_1
to avoid constrain violations {yk}k:O i
SP3: Dual-Variable Update
Yo =Tk + Ok — Y
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Alternating Direction Method of Multipliers Algorithm

lteratively solve Augmented Lagrangian QP

1. Solve for states, inputs, and unconstrained outputs
Ly U, Vk

2. Solve for constrained outputs Y

3. Solve for dual-variables Yk

Intuition:

e Sub-problem 1 trades-off tracking the unconstrained
optimal and reference that avoids constraints

{ritece = {uk + Mo

* Sub-problems 2+3 provide integral-action on the reference
to avoid constrain violations

© 2020 Dr. Claus Danielson

Symmetry

{rirce = {Ue + o,

| " unconstr

—0--Y
e T =

]

SP2: Constraint Projection

5 2
yi = arg min {|yx — (v — )],

Wb

SP3: Dual-Variable Update
T = Ve + Uk — Uk
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Alternating Direction Method of Multipliers Algorithm

lteratively solve Augmented Lagrangian QP {Tk}lkvz—()l = {yn + %}é\f:—(}
1. Solve for states, inputs, and unconstrained outputs ¢
Ly U, Vk

2. Solve for constrained outputs Y B

3. Solve for dual-variables Yk

—0--Yy

unconstr
o, . _.G__éi/:y{cl]_'.?ﬁ]
Intuition: | P

* Sub-problem 1 trades-off tracking the unconstrained {U '}N_1
optimal and reference that avoids constraints kJ k=0

{Tk}é\f:_o L _ {yk i Vk}]kvz_o 1 SP2: Constraint Projection

. 2
yp = arg min [y, — (or — )

* Sub-problems 2+3 provide integral-action on the reference N_1
to avoid constrain violations {yk}kzo

SP3: Dual-Variable Update
T = Ve + Uk — Uk

© 2020 Dr. Claus Danielson Symmetry
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Alternating Direction Method of Multipliers Algorithm

Iteratively solve Augmented Lagrangian QP {rk}fj:_ol = {y + %}]k\’:_ol

1. Solve for states, inputs, and unconstrained outputs
Ly U, Vk

2. Solve for constrained outputs Y B

3. Solve for dual-variables Yk

—0--Y

unconstr
. 0 rll = I 4 i
Intuition: I o— itV

* Sub-problem 1 trades-off tracking the unconstrained {U '}N_1
optimal and reference that avoids constraints kJ k=0

{Tk}é\f:_o L _ {yr + Vk}]kvz_o L SP2: Constraint Prc.)jection ,
yp = arg min [jy, — (or — )

* Sub-problems 2+3 provide integral-action on the reference N_1
to avoid constrain violations {yk}k:()

SP3: Dual-Variable Update
T = Ve + Uk — Uk

© 2020 Dr. Claus Danielson Symmetry
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Symmetric ADMM

Computational bottleneck is solving the unconstrained {,,,k}lk\f_—ol = {yp + fyk}é\f_—ol

optimal control problem ¢— =

* SP1: O(n?) / O(n3) / \
SP1: Unconstrained Optimal Control

 SP2 & SP3: O(n) N—1 /

: rp| |Q S||zk| P 2
min 3 [on [ 1§ 2 o]+l
s.t. xx11 = Axp + Buy
* Symmetric Decomposition \ v = Cx + Duy, /

N-1
{vk }k:O l
SP2: Constraint Projection

. 2
yp = arg min {|yx — (vr = )|,

N-1
{Yk o i
SP3: Dual-Variable Update
T = Ve + Uk — Uk

Exploit symmetry to reduce the computational complexity

© 2020 Dr. Claus Danielson Symmetry 30



Symmetric Decomposition

Use Schur’s lemma to decompose linear systems

Symmetric matrices have input subspaces that u(t) — G > (t)
only affect the corresponding output subspace

* From representation theory of linear groups u(t) cU, = y(t) €Y,

u(t) € Uy = y(t) € Yy
Decompose dynamics of symmetric systems
* Symmetric cost decompose similarly

* Decomposition is both numerically and dynamically robust

Gy ifi=j

O .GP, ; =
Yot ) if § £ §

© 2020 Dr. Claus Danielson Symmetry 31



Symmetric Decomposition: Example

Example: 2-masses (4 states, 2 inputs/outputs)

* Reflective symmetry Ui, Y1 uz, Y2
* In-phase forces will produce in-phase displacements k |_> k I_> k
ur(t) = us(t) = y1(t) = yal(t m m
1(1) = ua( )1 yll( ) = y2(t) : 0 0
Pl —pl = — b b b
Y LG
20 20

* Qut-of-phase forces will produce out-of-phase displacements

ur(t) = —u2(t) = y1(t) = —ya(t)

1 1 60} A
2 _ 2 _ G
q)y o ¢u o \/5 [—1:| -80 2 12 0 2
10 10 10
20 20
0 0
o co. )G ifi=] o »
Y,1 u,)] — e . . a R a .
le 60} /Y -60
77 o Gias
-80 -80
107 10° 10° 107 10° 10°
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Symmetric Decomposition: Example

Example: Quadrotor (12 states, 4 inputs)
* Dihedral-4 symmetry Gii

* —
* Decomposition into 4 subsystems: (I)y,z’G(I)u,j — if :
. . . if i #
e z-cartesian dynamics: 2 states, 1 input

1
ol — P2 = -1
__1_
-

U \/5 0

| Y] -1
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Symmetric ADMM

Use symmetric decomposition to decompose
unconstrained optimal control problem

p

® 0] A |B][® 0 A | B
) [erp [T a-jledes
\ 0
([0, S
P? 0 / Q S (I)Jx 0 _< S’:z Rz.z.
0 ®|| S R||l0 & i S
\ 0

* Decompose dynamics and constraints

* Completely decoupled unconstrained optimal control
problems

* Decoupled sub-problems can be solve sequentially or in
parallel

© 2020 Dr. Claus Danielson

Symmetry

s

{r N2t = {4 v !

v

2 ] 8

s.t. xx11 = Axp + Buy

\ v, = Cxp + Dug

P1: Unconstrained Optimal Control

p 2
o) (2] + Bl

N

J

{Uk}kN:Bli

SP2: Constraint Projection

. 2
yp = arg min {|yx — (vr = )|,

wh

{

SP3: Dual-Variable Update
T = Ve + Uk — Uk
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Symmetric ADMM

Use symmetric decomposition to decompose
unconstrained optimal control problem

B[ 0]
Dllo @ |=)1L

* Decompose dynamics and constraints

* Completely decoupled unconstrained optimal control

problems

* Decoupled sub-problems can be solve sequentially or in

parallel

© 2020 Dr. Claus Danielson

Ay | B
Cii | Dy
0
S Ry
0

Symmetry

~ ol o o)
k
B8
s.t. xp11 = Az + Bug
= D
K v, = Czp + Duyg, J
( N—1 . A A \
min | Qi Salfz] o5 )
— Wik | [ Si R |uk] 2
@ik — é zxzk + Duuzk’
XM
N-—1 A
. xzk sz Su T “
min A & -
s.t. iik-l—l = Azﬂ%k + Bz'ﬂlzk
K ’IA),k = é @xzk + Duuzk

35



Symmetric ADMM

Decomposition of Sub-Problem 1: Unconstrained Optimal {r }N—l
Control Problem " k=0

1. Project reference onto subspaces

2. Solve optimal control problem

3. Lift and combine outputs

Sub-Problems 2&3 solved normally

* Dual-variable updates can also be decomposed (w/ minimal benefit)

© 2020 Dr. Claus Danielson Symmetry 36



Symmetric ADMM

Computational Complexity

Decomposing Sub-Problem 1 does not change convergence rate

* Transformations are orthogonal
 # of iterations for symmetric ADMM = # of iterations for baseline ADMM

© 2020 Dr. Claus Danielson Symmetry 37



Symmetric ADMM

Computational Complexity

Decomposing Sub-Problem 1 does not change convergence rate

* Transformations are orthogonal
 # of iterations for symmetric ADMM = # of iterations for baseline ADMM

+Decomposing Sub-Problem 1 does reduce cost of solving optimal control problem
e Sequential: reduction by m
* Parallel: reduction by m?
* m<n is related to size of symmetry group
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Symmetric ADMM

Computational Complexity

Decomposing Sub-Problem 1 does not change convergence rate
* Transformations are orthogonal
* # of iterations for symmetric ADMM = # of iterations for baseline ADMM

+Decomposing Sub-Problem 1 does reduce cost of solving optimal control problem
e Sequential: reduction by m
* Parallel: reduction by m?
* m<n is related to size of symmetry group

— Addition cost required to project/lift Sub-Problem 1
* Overall reduction if cost of performing transformations is sub-quadratic <O(m?)
* Generally, not true e.g. singular value decomposition O(n?)>0(m?)
* Cyclic-m/dihedral-m groups: O(m log m) (Fast Fourier Transform)
* Symmetric-m/hyperoctohedral-m groups: O(m)
* 4 symmetry groups (cyclic/dihedral/symmetric/hyperoctohedral) cover most applications
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Application: Symmetric HVAC

Heating ventilation and air-conditioning (HVAC)

* Cost Function: Constrained Optimal Control Problem

* Room temperature tracking
* Energy consumption

. N—-1
min p(mN|t) + Zkzo Q($k|t, Ukz|t)

 Dynamics: st. ZTpt1e = f(Tr|e, Unjt)
* Thermodynamics
* Fluid-dynamics
* Heat-transfer
* Constraints:
* Maintain sub-cooling/super-heating in indoor units

* Ensure gas entering compressor
e Limits on valve and compressor
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Application: Symmetric HVAC

Symmetry:

 Due to repeated components Constrained Optimal Control Problem

* Same heat-exchangers, fans, sensors in each room

) o min  p(zyn|) + chv—_olq(xku, U )
» Refrigerant flows through pipes of similar diameter -~
* Rooms have different thermal masses, pipes have different s.t. T = f(Trper wk)e)
lengths

T € X, upe €U
 Behavioral symmetry rnp €C

* Indoor units have similar dynamics and costs

© 2020 Dr. Claus Danielson
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Application: Symmetric HVAC

10m _ —f— Baseline Sequential --}--Parallel =} quadprog| = - — — %—
--F I 1
= - - — b = = T - = - -

Solver-Time

4 8 12 16 20 24 28 32
Number of Rooms

* Test emulates embedded processor performance
 Disabled multi-threading, code acceleration, brute-force matrix computation

* Optimization problem always solved within the allotted time
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Application: Symmetric HVAC

10MB - | —=— Baseline Sequential ---P-:- Parallel e " -
8 IMBE e T e
) :
= B
O 100kB ¢
E ?. .............. ? ............... ?- .............. ?. .............. ?. .............. .ib ............... ? ............... ?
100kB ¢
s prTmmmgmimofm s s s o
o
'CCJ | TR Prorermnraranans Prreresrarauranas Pesrermraraunas ) U Prorernranannans Presesrarannaas >
10kB | | | | | | | |
4 8 12 16 20 24 28 32

Number of Rooms
* Memory requires below allotted space
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Thanks for your attention

Questions?

cdanielson@unm.edu



