Exploiting Symmetry in Large-Scale Optimization and Control

Claus Danielson
Assistant Professor
Department of Mechanical Engineering
University of New Mexico

Outline

- Personal Overview
 - Background
 - Research Interests
- Symmetry
 - Model Predictive Control (MPC)
 - Symmetric MPC
 - Symmetric Explicit MPC
 - Symmetric Implicit MPC
 - Symmetric Alternating Direction Method of Multipliers (ADMM)
 - Example Symmetric HVAC

Education

Doctorate: University of California, Berkeley

Advisor: Francesco Borrelli

Model Predictive Control Lab

Masters: Rensselaer Polytechnic Institute

Advisor: John Wen

Center for Automation Technology and Systems

Bachelors: University of Washington

Industrial Experience

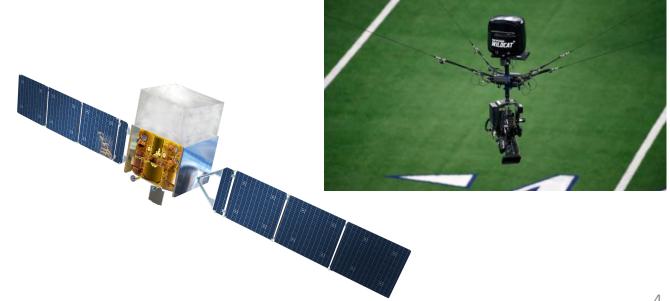
Mitsubishi Electric Research Laboratories

- Autonomous driving
- Heating, Ventilation, and Air-Conditioning
- Advanced Manufacturing, Spacecraft (JAXA)

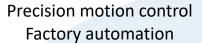
Sequoia Technologies

- Local start-up
- Robotics for television broadcast

Air Force Research Laboratories **General Dynamics**



Research Interests

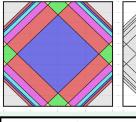


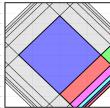
Learning-based control

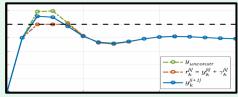
Motion planning

- Autonomous driving
- Drones and robotics
- Spacecraft rendezvous

Optimization and Control for Energy Efficiency







Real-time optimization
Computational geometry
Symmetry

Optimization

Outline

- Personal Overview
 - Background
 - Research Interests
- Symmetry
 - Model Predictive Control (MPC)
 - Symmetric MPC
 - Symmetric Explicit MPC
 - Symmetric Implicit MPC
 - Symmetric Alternating Direction Method of Multipliers (ADMM)
 - Example Symmetric HVAC

Symmetry: Intuition and Applications

Motivation: Model predictive control for large-scale systems

- High-dimensional problems
- Limited computation

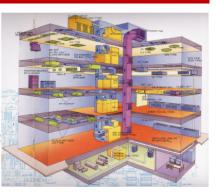
Large-scale systems comprised of repeated components connected in regular patterns

- Patterns called symmetries
- Also called invariance or equivariance

Benefit:

- Symmetric systems are simpler
- More symmetries → simpler system

Question: How do we use symmetry to simplify MPC?

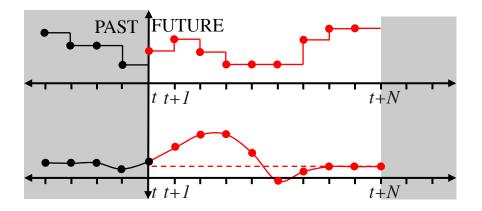


Receding Horizon Control

- 1. Determine current situation
 - Look at the chess board
 - Measuring sensors
- 2. Formulate a plan of future actions
 - Think about strategy
 - Solve optimal control problem
- 3. Apply first-step of plan
 - Move your pieces
 - Command the actuators

Model Predictive Control:

 Obtain control input by solving constrained finite-time optimal control (CFTOC) problem



Finite-Time Optimal Control Problem

$$\min_{u_0, \dots, u_{N-1}} p(x_N) + \sum_{k=1}^{N} q(x_k, u_k)$$
s.t.
$$x_{k+1} = f(x_k, u_k)$$

$$x_k \in \mathcal{X}, u_k \in \mathcal{U}$$

Receding Horizon Control

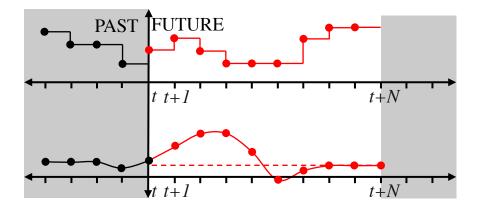
- 1. Determine current situation
 - Look at the chess board
 - Measuring sensors
- 2. Formulate a plan of future actions
 - Think about strategy
 - Solve optimal control problem
- 3. Apply first-step of plan
 - Move your pieces
 - Command the actuators

Model Predictive Control:

 Obtain control input by solving constrained finite-time optimal control (CFTOC) problem

Design Considerations for Model Predictive Control:

- Stability: Closed-loop stability not guaranteed
- Persistent Feasibility: Optimization problem
- may become infeasible
- Robustness: Controller must continue to function in presence of model uncertainty
- Performance: Optimization problem only considers cost over finite-horizon
- Real-time Implementation: Need to solve optimization problem in real-time



Finite-Time Optimal Control Problem

$$\min_{u_0, \dots, u_{N-1}} p(x_N) + \sum_{k=1}^{N} q(x_k, u_k)$$
s.t. $x_{k+1} = f(x_k, u_k)$

$$x_k \in \mathcal{X}, u_k \in \mathcal{U}$$

10

Model Predictive Control:

 Obtain control input by solving constrained finite-time optimal control (CFTOC) problem

Explicit Model Predictive Control:

- Replace CFTOC with pre-solved look-up table
- If CFTOC is QP or LP then look-up table is piecewise affine on polyhedral partition

Finite-Time Optimal Control Problem

$$\min_{u_0, \dots, u_{N-1}} p(x_N) + \sum_{k=1}^{N} q(x_k, u_k)$$
s.t.
$$x_{k+1} = f(x_k, u_k)$$

$$x_k \in \mathcal{X}, u_k \in \mathcal{U}$$

Explicit Model Predictive Control

$$u_0^{\star}(x) = \begin{cases} F_1 x + G_1 & \text{for } x \in \mathcal{R}_1 \\ \vdots \\ F_r x + G_r & \text{for } x \in \mathcal{R}_r. \end{cases}$$

Outline

- Personal Overview
 - Background
 - Research Interests
- Symmetry
 - Model Predictive Control (MPC)
 - Symmetric MPC
 - Symmetric Explicit MPC
 - Symmetric Implicit MPC
 - Symmetric Alternating Direction Method of Multipliers (ADMM)
- Example Symmetric HVAC

A symmetry of the optimal control problem is a transformation that preserves:

Constraints

$$\Theta \mathcal{X} = \mathcal{X}$$

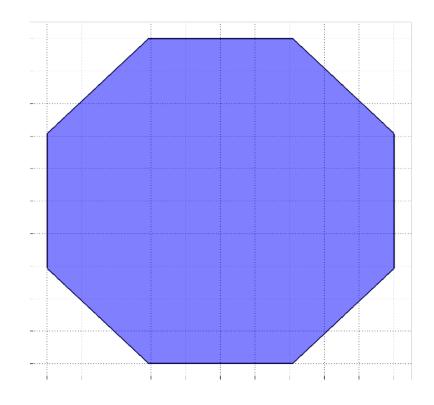
$$\Omega \mathcal{U} = \mathcal{U}$$

Dynamics

$$\Theta f(x, u) = f(\Theta x, \Omega u)$$

Cost

$$p(\Theta x) = p(x)$$
$$q(\Theta x, \Omega u) = q(x, u)$$



A symmetry of the optimal control problem is a transformation that preserves:

Constraints

$$\Theta \mathcal{X} = \mathcal{X}$$

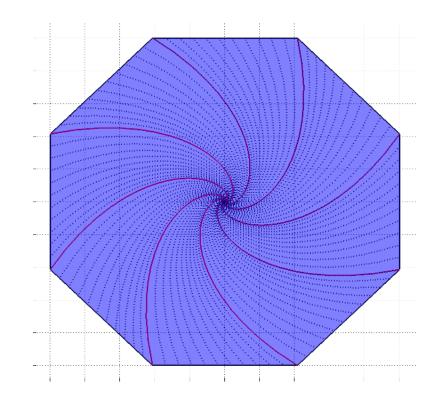
$$\Omega \mathcal{U} = \mathcal{U}$$

Dynamics

$$\Theta f(x, u) = f(\Theta x, \Omega u)$$

Cost

$$p(\Theta x) = p(x)$$
$$q(\Theta x, \Omega u) = q(x, u)$$



Theorem: Symmetric MPC

If the optimal control problem is symmetric and convex it has a symmetric controller

$$\Omega u_0^{\star}(x) = u_0^{\star}(\Theta x)$$

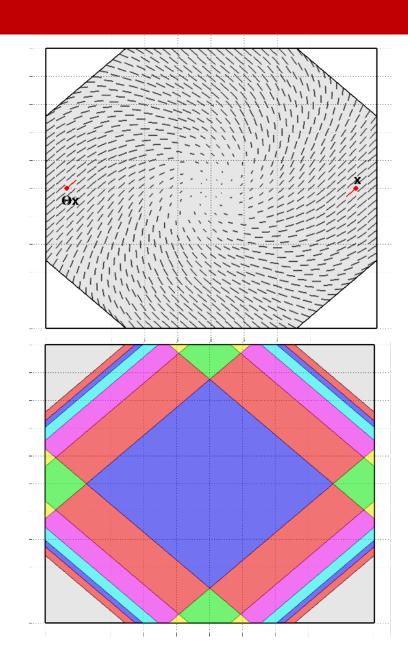
Corollary: Symmetric Explicit MPC

If the symmetric MPC is an LP or QP then the symmetries permute the controller pieces

$$\Omega F_i = F_j \Theta$$

$$\Omega G_i = G_j$$

$$\Theta \mathcal{R}_i = \mathcal{R}_j$$



Theorem: Symmetric MPC

If the optimal control problem is symmetric and convex it has a symmetric controller

$$\Omega u_0^{\star}(x) = u_0^{\star}(\Theta x)$$

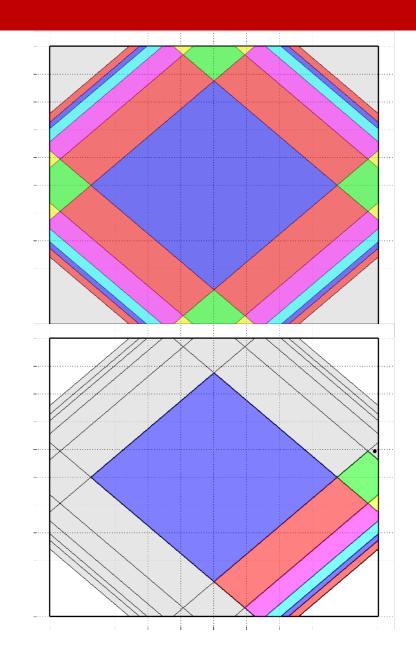
Corollary: Symmetric Explicit MPC

If the symmetric MPC is an LP or QP then the symmetries permute the controller pieces

$$\Omega F_i = F_j \Theta$$

$$\Omega G_i = G_j$$

$$\Theta \mathcal{R}_i = \mathcal{R}_j$$



Example: Quadrotor

Symmetry group: Dihedral-4 group ★ reflection group

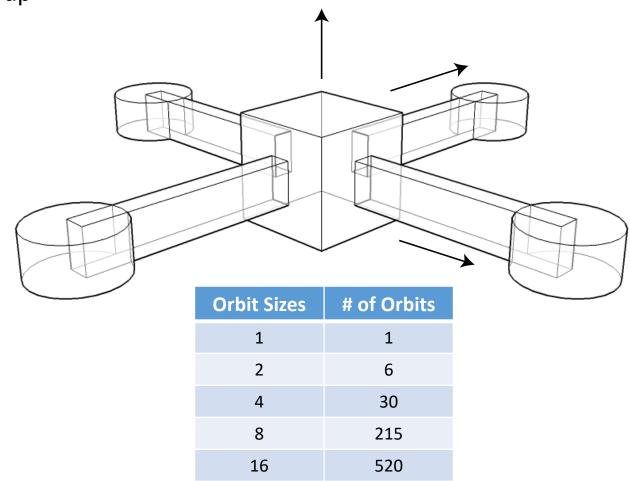
• 16 symmetries

Without symmetry:

- 10,173 controller pieces
- 53.7 megabytes

With symmetry:

- 772 controller pieces
- 4.2 megabytes



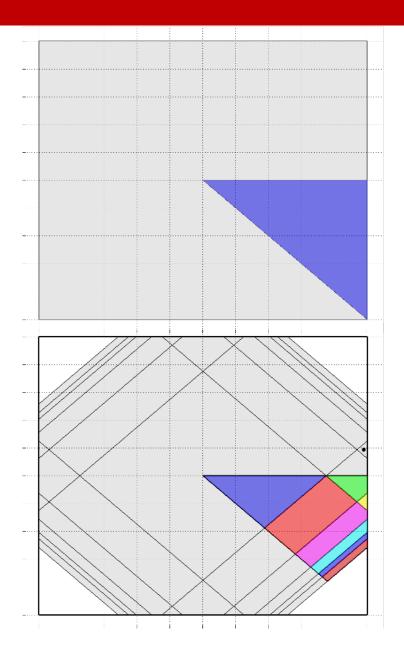
Fundamental Domain Controller

Fundamental Domain Controller

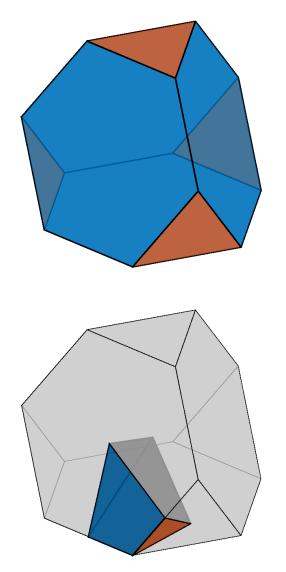
- Orbit controller requires solving original constrained optimal control problem and compressing the result.
- Fundamental domain controller solves a smaller constrained optimal control problem.

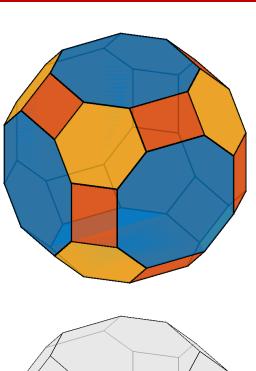
Linear-complexity algorithms

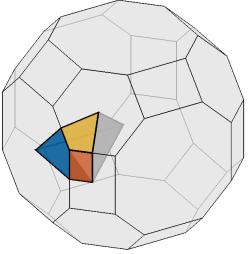
- Constructing fundamental domain
- Searching for transformation into fundamental domain

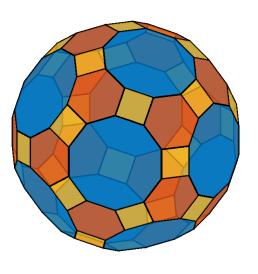


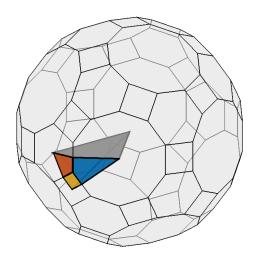
Fundamental Domains: Archimedean Solids











Outline

- Personal Overview
 - Background
 - Research Interests
- Symmetry
 - Model Predictive Control (MPC)
 - Symmetric MPC
 - Symmetric Explicit MPC
 - Symmetric Implicit MPC
 - Symmetric Alternating Direction Method of Multipliers (ADMM)
 - Example Symmetric HVAC

Problem:

- Generic linear MPC problem
- Outputs are quantities to be constrained
- Output constraints include input constraints
- Box constraints on outputs

Terminal cost and constraints can be added

$$\min \sum_{k=0}^{N-1} \begin{bmatrix} x_k \\ u_k \end{bmatrix}' \begin{bmatrix} Q & S \\ S & R \end{bmatrix} \begin{bmatrix} x_k \\ u_k \end{bmatrix}$$
s.t. $x_{k+1} = Ax_k + Bu_k$

$$y_k = Cx_k + Du_k$$

$$y_k \in \mathcal{Y}$$

ADMM: Augmented Lagrangian QP

Split variable with inequality constraints

$$\min \sum_{k=0}^{N-1} \begin{bmatrix} x_k \\ u_k \end{bmatrix}' \begin{bmatrix} Q & S \\ S & R \end{bmatrix} \begin{bmatrix} x_k \\ u_k \end{bmatrix}$$
s.t. $x_{k+1} = Ax_k + Bu_k$

$$y_k = Cx_k + Du_k$$

$$y_k \in \mathcal{Y}$$

$$\min \sum_{k=0}^{N-1} \begin{bmatrix} x_k \\ u_k \end{bmatrix}' \begin{bmatrix} Q & S \\ S & R \end{bmatrix} \begin{bmatrix} x_k \\ u_k \end{bmatrix}$$
s.t. $x_{k+1} = Ax_k + Bu_k$

$$v_k = Cx_k + Du_k$$

$$v_k = y_k$$

$$y_k \in \mathcal{Y}$$

- Split variable with inequality constraints
- Add equality constraint to cost function
 - Lagrange multiplier
 - Quadratic regularization

$$\min \sum_{k=0}^{N-1} \begin{bmatrix} x_k \\ u_k \end{bmatrix}' \begin{bmatrix} Q & S \\ S & R \end{bmatrix} \begin{bmatrix} x_k \\ u_k \end{bmatrix}$$
s.t. $x_{k+1} = Ax_k + Bu_k$

$$v_k = Cx_k + Du_k$$

$$v_k = y_k$$

$$y_k \in \mathcal{Y}$$

$$\min \sum_{k=0}^{N-1} \begin{bmatrix} x_k \\ u_k \end{bmatrix}' \begin{bmatrix} Q & S \\ S & R \end{bmatrix} \begin{bmatrix} x_k \\ u_k \end{bmatrix} + \frac{\rho}{2} \| v_k - y_k - \gamma_k \|_2^2$$
s.t.
$$x_{k+1} = Ax_k + Bu_k$$

$$v_k = Cx_k + Du_k$$

$$y_k \in \mathcal{Y}$$

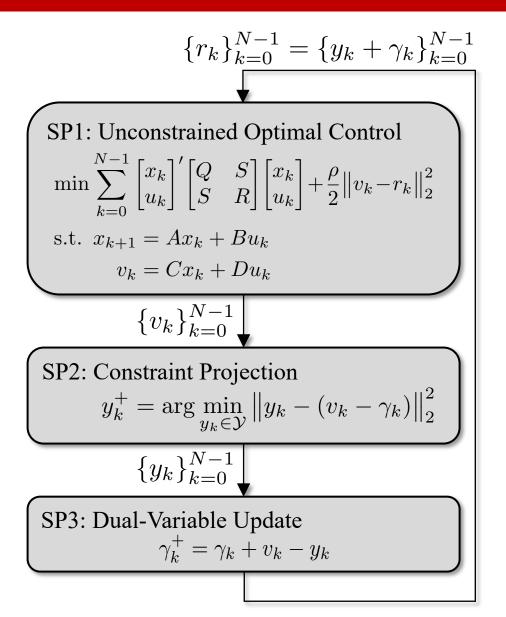
Iteratively solve Augmented Lagrangian QP

- 1. Solve for states, inputs, and unconstrained outputs x_k, u_k, v_k
- 2. Solve for constrained outputs y_k
- 3. Solve for dual-variables γ_k

Intuition:

 Sub-problem 1 trades-off tracking the unconstrained optimal and reference that avoids constraints

$$\{r_k\}_{k=0}^{N-1} = \{y_k + \gamma_k\}_{k=0}^{N-1}$$



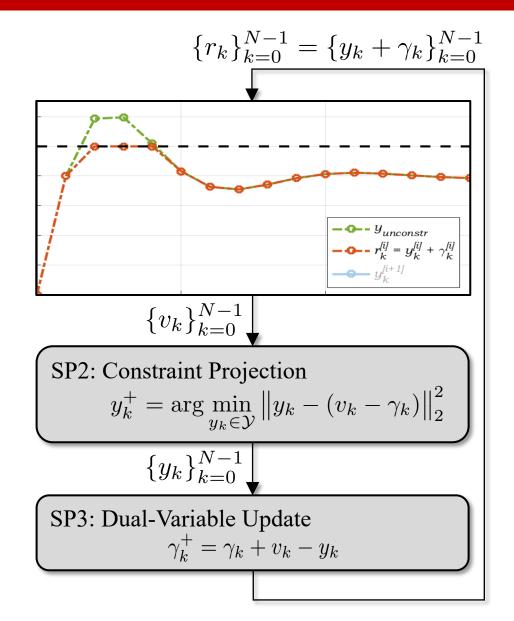
Iteratively solve Augmented Lagrangian QP

- 1. Solve for states, inputs, and unconstrained outputs x_k, u_k, v_k
- 2. Solve for constrained outputs y_k
- 3. Solve for dual-variables γ_k

Intuition:

 Sub-problem 1 trades-off tracking the unconstrained optimal and reference that avoids constraints

$$\{r_k\}_{k=0}^{N-1} = \{y_k + \gamma_k\}_{k=0}^{N-1}$$



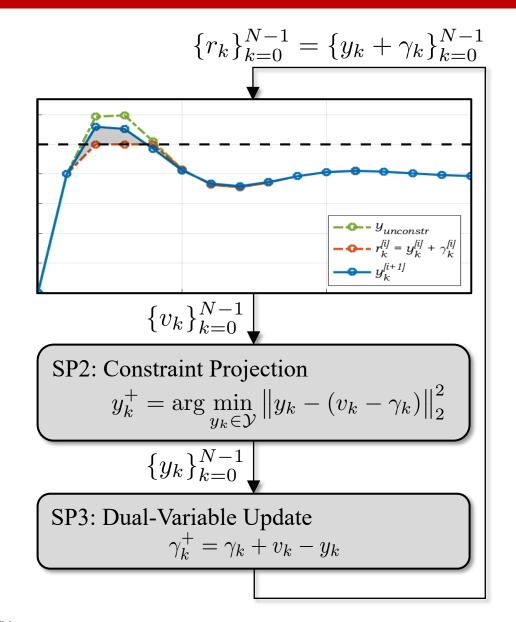
Iteratively solve Augmented Lagrangian QP

- 1. Solve for states, inputs, and unconstrained outputs x_k, u_k, v_k
- 2. Solve for constrained outputs y_k
- 3. Solve for dual-variables γ_k

Intuition:

 Sub-problem 1 trades-off tracking the unconstrained optimal and reference that avoids constraints

$$\{r_k\}_{k=0}^{N-1} = \{y_k + \gamma_k\}_{k=0}^{N-1}$$



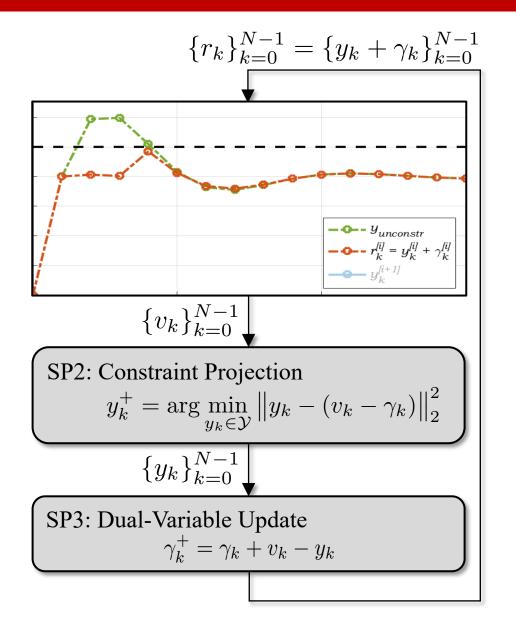
Iteratively solve Augmented Lagrangian QP

- 1. Solve for states, inputs, and unconstrained outputs x_k, u_k, v_k
- 2. Solve for constrained outputs y_k
- 3. Solve for dual-variables γ_k

Intuition:

 Sub-problem 1 trades-off tracking the unconstrained optimal and reference that avoids constraints

$$\{r_k\}_{k=0}^{N-1} = \{y_k + \gamma_k\}_{k=0}^{N-1}$$



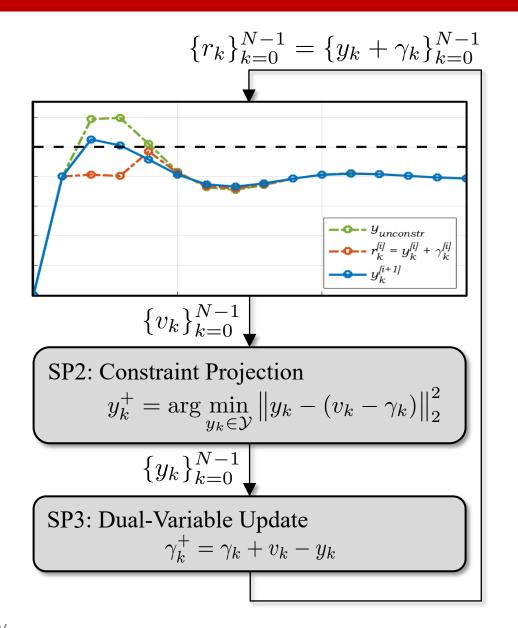
Iteratively solve Augmented Lagrangian QP

- 1. Solve for states, inputs, and unconstrained outputs x_k, u_k, v_k
- 2. Solve for constrained outputs y_k
- 3. Solve for dual-variables γ_k

Intuition:

 Sub-problem 1 trades-off tracking the unconstrained optimal and reference that avoids constraints

$$\{r_k\}_{k=0}^{N-1} = \{y_k + \gamma_k\}_{k=0}^{N-1}$$



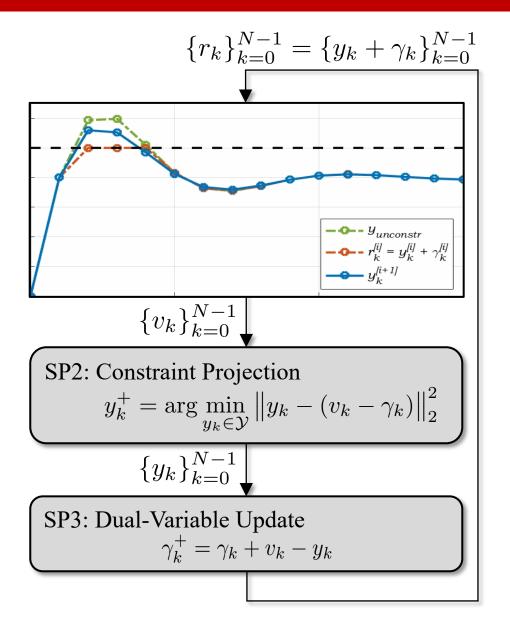
Iteratively solve Augmented Lagrangian QP

- 1. Solve for states, inputs, and unconstrained outputs x_k, u_k, v_k
- 2. Solve for constrained outputs y_k
- 3. Solve for dual-variables γ_k

Intuition:

 Sub-problem 1 trades-off tracking the unconstrained optimal and reference that avoids constraints

$$\{r_k\}_{k=0}^{N-1} = \{y_k + \gamma_k\}_{k=0}^{N-1}$$



Computational bottleneck is solving the unconstrained optimal control problem

• SP1: $O(n^2) / O(n^3)$

• SP2 & SP3: *O(n)*

Exploit symmetry to reduce the computational complexity

• Symmetric Decomposition

$$\{r_k\}_{k=0}^{N-1} = \{y_k + \gamma_k\}_{k=0}^{N-1}$$

$$SP1: \text{Unconstrained Optimal Control}$$

$$\min \sum_{k=0}^{N-1} \begin{bmatrix} x_k \\ u_k \end{bmatrix}' \begin{bmatrix} Q & S \\ S & R \end{bmatrix} \begin{bmatrix} x_k \\ u_k \end{bmatrix} + \frac{\rho}{2} \|v_k - r_k\|_2^2$$

$$\text{s.t. } x_{k+1} = Ax_k + Bu_k$$

$$v_k = Cx_k + Du_k$$

$$\{v_k\}_{k=0}^{N-1} \downarrow$$

$$\{v_k\}_{k=0}^{N-1} \downarrow$$

$$\{y_k\}_{k=0}^{N-1} \downarrow$$

$$\{y_k\}_{k=0}^{N-1} \downarrow$$

$$SP3: \text{Dual-Variable Update}$$

$$\gamma_k^+ = \gamma_k + v_k - y_k$$

Symmetric Decomposition

Use Schur's lemma to decompose linear systems

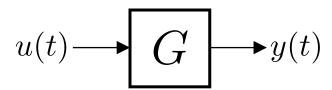
Schur's Lemma

Symmetric matrices have input subspaces that only affect the corresponding output subspace

From representation theory of linear groups

Decompose dynamics of symmetric systems

- Symmetric cost decompose similarly
- Decomposition is both numerically and dynamically robust



$$u(t) \in \mathbb{U}_1 \implies y(t) \in \mathbb{Y}_1$$
$$u(t) \in \mathbb{U}_1^{\perp} \implies y(t) \in \mathbb{Y}_1^{\perp}$$

$$\Phi_{y,i}^* G \Phi_{u,j} = \begin{cases} \hat{G}_{ii} & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

31

Symmetric Decomposition: Example

Example: 2-masses (4 states, 2 inputs/outputs)

- Reflective symmetry
- In-phase forces will produce in-phase displacements

$$u_1(t) = u_2(t) \Rightarrow y_1(t) = y_2(t)$$

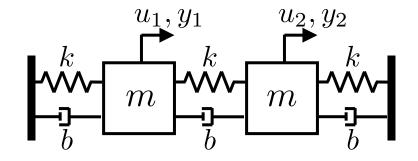
$$\Phi_y^1 = \Phi_u^1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1 \end{bmatrix}$$

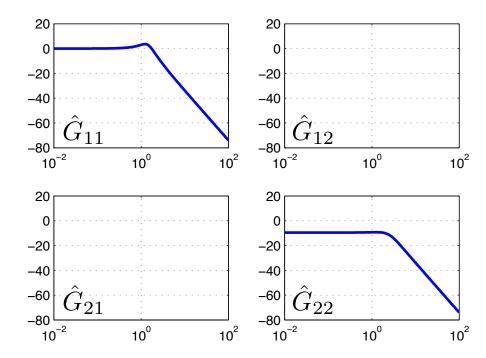
• Out-of-phase forces will produce out-of-phase displacements

$$u_1(t) = -u_2(t) \Rightarrow y_1(t) = -y_2(t)$$

$$\Phi_y^2 = \Phi_u^2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\ -1 \end{bmatrix}$$

$$\Phi_{y,i}^* G \Phi_{u,j} = \begin{cases} \hat{G}_{ii} & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$





Symmetric Decomposition: Example

Example: Quadrotor (12 states, 4 inputs)

- Dihedral-4 symmetry
- Decomposition into 4 subsystems:
 - z-cartesian dynamics: 2 states, 1 input

$$\Phi_u^1 = \frac{1}{2} \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$$

$$\Phi^3 = \frac{1}{2} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$\Phi_{y,i}^* G \Phi_{u,j} = \begin{cases} \hat{G}_{ii} & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

$$\Phi_u^2 = \frac{1}{2} \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix}$$

$$\Phi_u^4 = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 \\ 1 \\ 0 \\ -1 \end{bmatrix}$$

Use symmetric decomposition to decompose unconstrained optimal control problem

$$\begin{bmatrix} \Phi_x^i & 0 \\ 0 & \Phi_y^i \end{bmatrix}' \begin{bmatrix} A & B \\ \hline C & D \end{bmatrix} \begin{bmatrix} \Phi_x^j & 0 \\ 0 & \Phi_u^j \end{bmatrix} = \begin{cases} \begin{bmatrix} \hat{A}_{ii} & \hat{B}_{ii} \\ \hat{C}_{ii} & \hat{D}_{ii} \end{bmatrix} \\ 0 \end{cases}$$

$$\begin{bmatrix} \Phi_x^i & 0 \\ 0 & \Phi_u^i \end{bmatrix}' \begin{bmatrix} Q & S \\ S' & R \end{bmatrix} \begin{bmatrix} \Phi_x^j & 0 \\ 0 & \Phi_u^j \end{bmatrix} = \begin{cases} \begin{bmatrix} \hat{Q}_{ii} & \hat{S}_{ii} \\ \hat{S}'_{ii} & \hat{R}_{ii} \end{bmatrix}$$

- Decompose dynamics and constraints
- Completely decoupled unconstrained optimal control problems
- Decoupled sub-problems can be solve sequentially or in parallel

$$\{r_k\}_{k=0}^{N-1} = \{y_k + \gamma_k\}_{k=0}^{N-1}$$

$$SP1: \text{ Unconstrained Optimal Control}$$

$$\min \sum_{k=0}^{N-1} \begin{bmatrix} x_k \\ u_k \end{bmatrix}' \begin{bmatrix} Q & S \\ S & R \end{bmatrix} \begin{bmatrix} x_k \\ u_k \end{bmatrix} + \frac{\rho}{2} \|v_k - r_k\|_2^2$$

$$\text{s.t. } x_{k+1} = Ax_k + Bu_k$$

$$v_k = Cx_k + Du_k$$

$$\{v_k\}_{k=0}^{N-1}$$

SP2: Constraint Projection

$$y_k^+ = \arg\min_{y_k \in \mathcal{Y}} \|y_k - (v_k - \gamma_k)\|_2^2$$

$$\{y_k\}_{k=0}^{N-1}$$

SP3: Dual-Variable Update

$$\gamma_k^+ = \gamma_k + v_k - y_k$$

Use symmetric decomposition to decompose unconstrained optimal control problem

$$\begin{bmatrix} \Phi_x^i & 0 \\ 0 & \Phi_y^i \end{bmatrix}' \begin{bmatrix} A & B \\ \hline C & D \end{bmatrix} \begin{bmatrix} \Phi_x^j & 0 \\ 0 & \Phi_u^j \end{bmatrix} = \begin{cases} \begin{bmatrix} \hat{A}_{ii} & \hat{B}_{ii} \\ \hat{C}_{ii} & \hat{D}_{ii} \end{bmatrix} \\ 0 \end{cases}$$

$$\begin{bmatrix} \Phi_x^i & 0 \\ 0 & \Phi_u^i \end{bmatrix}' \begin{bmatrix} Q & S \\ S' & R \end{bmatrix} \begin{bmatrix} \Phi_x^j & 0 \\ 0 & \Phi_u^j \end{bmatrix} = \begin{cases} \begin{bmatrix} \hat{Q}_{ii} & \hat{S}_{ii} \\ \hat{S}'_{ii} & \hat{R}_{ii} \end{bmatrix}$$

- Decompose dynamics and constraints
- Completely decoupled unconstrained optimal control problems
- Decoupled sub-problems can be solve sequentially or in parallel

$$\min \sum_{k=0}^{N-1} \begin{bmatrix} x_k \\ u_k \end{bmatrix}' \begin{bmatrix} Q & S \\ S & R \end{bmatrix} \begin{bmatrix} x_k \\ u_k \end{bmatrix} + \frac{\rho}{2} \|v_k - r_k\|_2^2$$

s.t.
$$x_{k+1} = Ax_k + Bu_k$$

$$v_k = Cx_k + Du_k$$

$$\min \sum_{k=0}^{N-1} \begin{bmatrix} \hat{x}_{ik} \\ \hat{u}_{ik} \end{bmatrix}' \begin{bmatrix} \hat{Q}_{ii} & \hat{S}_{ii} \\ \hat{S}_{ii} & \hat{R}_{ii} \end{bmatrix} \begin{bmatrix} x_k \\ u_k \end{bmatrix} + \frac{\rho}{2} \|\hat{v}_{ik} - \hat{r}_{ik}\|_2^2$$
s.t. $\hat{x}_{ik+1} = \hat{A}_{ii}\hat{x}_{ik} + \hat{B}_{ii}\hat{u}_{ik}$

s.t.
$$\hat{x}_{ik+1} = \hat{A}_{ii}\hat{x}_{ik} + \hat{B}_{ii}\hat{u}_{ik}$$

$$\hat{v}_{ik} = \hat{C}_{ii}\hat{x}_{ik} + \hat{D}_{ii}\hat{u}_{ik}$$

$$\times m$$

$$\min \sum_{k=0}^{N-1} \begin{bmatrix} \hat{x}_{ik} \\ \hat{u}_{ik} \end{bmatrix}' \begin{bmatrix} \hat{Q}_{ii} & \hat{S}_{ii} \\ \hat{S}_{ii} & \hat{R}_{ii} \end{bmatrix} \begin{bmatrix} x_k \\ u_k \end{bmatrix} + \frac{\rho}{2} \|\hat{v}_{ik} - \hat{r}_{ik}\|_2^2$$
s.t. $\hat{x}_{ik+1} = \hat{A}_{ii}\hat{x}_{ik} + \hat{B}_{ii}\hat{u}_{ik}$

s.t.
$$\hat{x}_{ik+1} = A_{ii}\hat{x}_{ik} + B_{ii}\hat{u}_{ik}$$

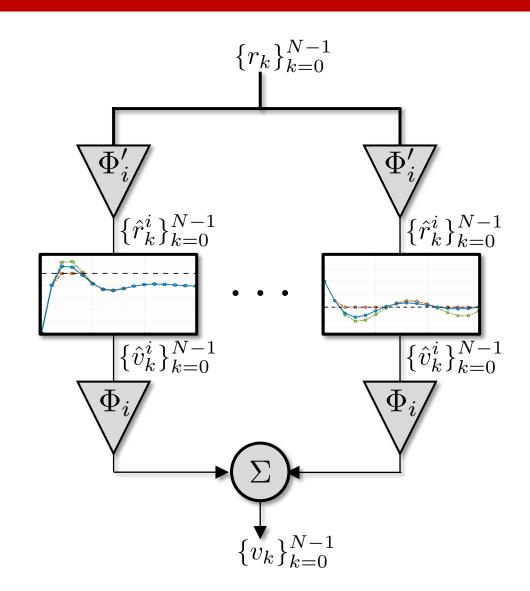
 $\hat{v}_{ik} = \hat{C}_{ii}\hat{x}_{ik} + \hat{D}_{ii}\hat{u}_{ik}$

Decomposition of Sub-Problem 1: Unconstrained Optimal Control Problem

- 1. Project reference onto subspaces
- 2. Solve optimal control problem
- 3. Lift and combine outputs

Sub-Problems 2&3 solved normally

Dual-variable updates can also be decomposed (w/ minimal benefit)



Computational Complexity

- Decomposing Sub-Problem 1 does not change convergence rate
 - Transformations are orthogonal
 - # of iterations for symmetric ADMM = # of iterations for baseline ADMM

Computational Complexity

- Decomposing Sub-Problem 1 does not change convergence rate
 - Transformations are orthogonal
 - # of iterations for symmetric ADMM = # of iterations for baseline ADMM
- +Decomposing Sub-Problem 1 does reduce cost of solving optimal control problem
 - Sequential: reduction by *m*
 - Parallel: reduction by m^2
 - *m*≤*n* is related to size of symmetry group

Computational Complexity

- Decomposing Sub-Problem 1 does not change convergence rate
 - Transformations are orthogonal
 - # of iterations for symmetric ADMM = # of iterations for baseline ADMM
- +Decomposing Sub-Problem 1 does reduce cost of solving optimal control problem
 - Sequential: reduction by *m*
 - Parallel: reduction by m²
 - *m*≤*n* is related to size of symmetry group
- Addition cost required to project/lift Sub-Problem 1
 - Overall reduction if cost of performing transformations is sub-quadratic $< O(m^2)$
 - Generally, not true e.g. singular value decomposition $O(n^2) \ge O(m^2)$
 - Cyclic-m/dihedral-m groups: O(m log m) (Fast Fourier Transform)
 - Symmetric-m/hyperoctohedral-m groups: O(m)
 - 4 symmetry groups (cyclic/dihedral/symmetric/hyperoctohedral) cover most applications

Outline

- Personal Overview
 - Background
 - Research Interests
- Symmetry
 - Model Predictive Control (MPC)
 - Symmetric MPC
 - Symmetric Explicit MPC
 - Symmetric Implicit MPC
 - Symmetric Alternating Direction Method of Multipliers (ADMM)
 - Example Symmetric HVAC

Heating ventilation and air-conditioning (HVAC)

- Cost Function:
 - · Room temperature tracking
 - Energy consumption
- Dynamics:
 - Thermodynamics
 - Fluid-dynamics
 - Heat-transfer
- Constraints:
 - Maintain sub-cooling/super-heating in indoor units
 - Ensure gas entering compressor
 - Limits on valve and compressor

Constrained Optimal Control Problem

min
$$p(x_{N|t}) + \sum_{k=0}^{N-1} q(x_{k|t}, u_{k|t})$$

s.t.
$$x_{k+1|t} = f(x_{k|t}, u_{k|t})$$

$$x_{k|t} \in \mathcal{X}, u_{k|t} \in \mathcal{U}$$

 $x_{N|t} \in \mathcal{C}$

Symmetry:

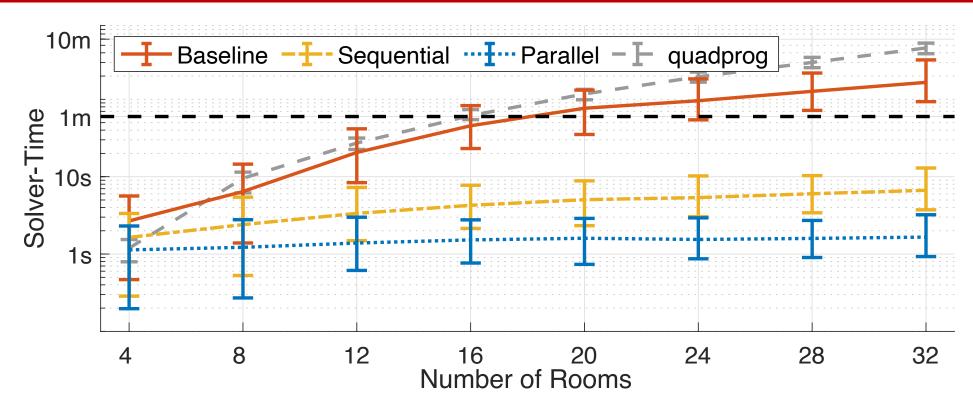
- Due to repeated components
 - Same heat-exchangers, fans, sensors in each room
 - Refrigerant flows through pipes of similar diameter
 - Rooms have different thermal masses, pipes have different lengths
- Behavioral symmetry
 - Indoor units have similar dynamics and costs

Constrained Optimal Control Problem

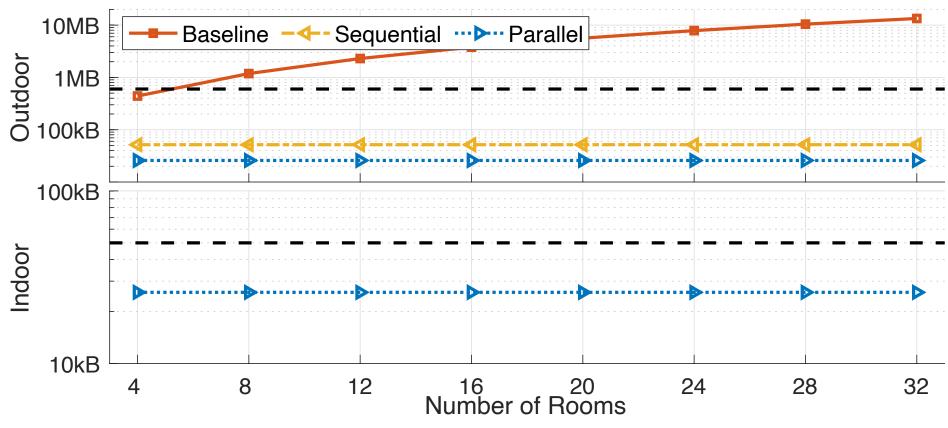
min
$$p(x_{N|t}) + \sum_{k=0}^{N-1} q(x_{k|t}, u_{k|t})$$

s.t.
$$x_{k+1|t} = f(x_{k|t}, u_{k|t})$$

$$x_{k|t} \in \mathcal{X}, u_{k|t} \in \mathcal{U}$$
 $x_{N|t} \in \mathcal{C}$



- Test emulates embedded processor performance
 - Disabled multi-threading, code acceleration, brute-force matrix computation
- Optimization problem always solved within the allotted time



• Memory requires below allotted space

Thanks for your attention

Questions?

cdanielson@unm.edu